Recurrent neural networks employing Lyapunov exponents for EEG signals classification
نویسندگان
چکیده
There are a number of different quantitative models that can be used in a medical diagnostic decision support system including parametric methods, non-parametric methods and several neural network models. Unfortunately, there is no theory available to guide model selection. The aim of this study is to evaluate the diagnostic accuracy of the recurrent neural networks (RNNs) employing Lyapunov exponents trained with Levenberg–Marquardt algorithm on the electroencephalogram (EEG) signals. An approach based on the consideration that the EEG signals are chaotic signals was used in developing a reliable classification method for electroencephalographic changes. This consideration was tested successfully using the non-linear dynamics tools, like the computation of Lyapunov exponents. We explored the ability of designed and trained Elman RNNs, combined with the Lyapunov exponents, to discriminate the EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures). The RNNs achieved accuracy rates which were higher than that of the feedforward neural network models. The obtained results demonstrated that the proposed RNNs employing the Lyapunov exponents can be useful in analyzing long-term EEG signals for early detection of the electroencephalographic changes. q 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals
An approach based on the consideration that electrocardiogram (ECG) signals are chaotic signals was presented for automated diagnosis of electrocardiographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Recurrent neural network (RNN) was implemented and used as basis for detection of variabilities of ECG sign...
متن کاملClassification of Epileptic EEG Signals using Time-Delay Neural Networks and Probabilistic Neural Networks
The aim of this paper is to investigate the performance of time delay neural networks (TDNNs) and the probabilistic neural networks (PNNs) trained with nonlinear features (Lyapunov exponents and Entropy) on electroencephalogram signals (EEG) in a specific pathological state. For this purpose, two types of EEG signals (normal and partial epilepsy) are analyzed. To evaluate the performance of the...
متن کاملReal Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light
The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...
متن کاملA New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...
متن کاملAnalysis of Chaotic Signals: Non-linear Methods versus Neural Networks
Applications of Non-linear Methods and Neural Networks in the analysis of chaotic signals are compared in the paper. Results of time series analysis by non-linear methods are illustrated by computations of Lyapunov exponents and correlation dimension. Abilities of Neural networks are demonstrated in reconstruction of chaotic attractors, in generation of chaos and in the classification and model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 29 شماره
صفحات -
تاریخ انتشار 2005